Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hematol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646919

RESUMO

Emerging evidence shows the crucial role of inflammation (particularly NF-κB pathway) in the development and progression of myelofibrosis (MF), becoming a promising therapeutic target. Furthermore, tailoring treatment with currently available JAK inhibitors (such as ruxolitinib or fedratinib) does not modify the natural history of the disease and has important limitations, including cytopenias. Since recent studies have highlighted the role of miR-146a, a negative regulator of the NF-κB pathway, in the pathogenesis of MF; here we used miR-146a-/- (KO) mice, a MF-like model lacking driver mutations, to investigate whether pharmacological inhibition of JAK/STAT and/or NF-κB pathways may reverse the myelofibrotic phenotype of these mice. Specifically, we tested the JAK1/2 inhibitor, ruxolitinib; the NF-κB inhibitor via IKKα/ß, BMS-345541; both inhibitors in combination; or a dual inhibitor of both pathways (JAK2/IRAK1), pacritinib. Although all treatments decreased spleen size and partially recovered its architecture, only NF-κB inhibition, either using BMS-345541 (alone or in combination) or pacritinib, resulted in a reduction of extramedullary hematopoiesis, bone marrow (BM) fibrosis and osteosclerosis, along with an attenuation of the exacerbated inflammatory state (via IL-1ß and TNFα). However, although dual inhibitor improved anemia and reversed thrombocytopenia, the combined therapy worsened anemia by inducing BM hypoplasia. Both therapeutic options reduced NF-κB and JAK/STAT signaling in a context of JAK2V617F-driven clonal hematopoiesis. Additionally, combined treatment reduced both COL1A1 and IL-6 production in an in vitro model mimicking JAK2-driven fibrosis. In conclusion, NF-κB inhibition reduces, in vitro and in vivo, disease burden and BM fibrosis, which could provide benefits in myelofibrosis patients.

2.
Cell Rep Med ; 4(12): 101329, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118408

RESUMO

Chronic myelomonocytic leukemia (CMML) is frequently associated with mutations in the rat sarcoma gene (RAS), leading to worse prognosis. RAS mutations result in active RAS-GTP proteins, favoring myeloid cell proliferation and survival and inducing the NLRP3 inflammasome together with the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which promote caspase-1 activation and interleukin (IL)-1ß release. Here, we report, in a cohort of CMML patients with mutations in KRAS, a constitutive activation of the NLRP3 inflammasome in monocytes, evidenced by ASC oligomerization and IL-1ß release, as well as a specific inflammatory cytokine signature. Treatment of a CMML patient with a KRASG12D mutation using the IL-1 receptor blocker anakinra inhibits NLRP3 inflammasome activation, reduces monocyte count, and improves the patient's clinical status, enabling a stem cell transplant. This reveals a basal inflammasome activation in RAS-mutated CMML patients and suggests potential therapeutic applications of NLRP3 and IL-1 blockers.


Assuntos
Inflamassomos , Leucemia Mielomonocítica Crônica , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Leucemia Mielomonocítica Crônica/genética , 60459 , Interleucina-1/metabolismo
3.
Br J Haematol ; 201(3): 470-479, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36573331

RESUMO

Studies prior to next-generation sequencing (NGS) showed that the frequent indolent course of chronic lymphocytic leukaemia (CLL) is related to most cells remaining quiescent in the G0 -G1 cell cycle phase, due to the expression of dysregulated cyclin genes. Of note, the activating nature of the NOTCH1 mutation in T lymphoblastic leukaemia also drives the dysregulation of cell cycle genes. Our goal was to comprehensively revisit the cell cycle in NOTCH1-mutated CLL (NOTCH1MUT ) to test for potential therapeutic targets. Among 378 NGS-annotated CLL cases, NOTCH1MUT cells displayed a unique transcriptome profile of G0 -G1 cell cycle components, with an overexpression of early-phase effectors, reaching a 38-, 27- and ninefold change increase for the complex elements CCND3, CDK4 and CDK6, respectively. This NOTCH1MUT cells' profile was related to more cells traversing through the cell cycle. In-vitro targeted inhibition of NOTCH1 gamma-secretase and CDK4/6 reversed the distribution of cells through the cycle phases and enhanced the killing of NOTCH1MUT CLL cells, suggesting new therapeutic approaches.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Ciclinas/genética , Ciclo Celular/genética , Divisão Celular , Mutação , Receptor Notch1/genética , Receptor Notch1/metabolismo
4.
Int J Mol Sci ; 22(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672065

RESUMO

Exosomes are extracellular vesicles that contain nucleic acids, lipids and metabolites, and play a critical role in health and disease as mediators of intercellular communication. The majority of extracellular vesicles in the blood are platelet-derived. Compared to adults, neonatal platelets are hyporeactive and show impaired granule release, associated with defects in Soluble N-ethylmaleimide-sensitive fusion Attachment protein REceptor (SNARE) proteins. Since these proteins participate in biogenesis of exosomes, we investigated the potential differences between newborn and adult plasma-derived exosomes. Plasma-derived exosomes were isolated by ultracentrifugation of umbilical cord blood from full-term neonates or peripheral blood from adults. Exosome characterization included size determination by transmission electron microscopy and quantitative proteomic analysis. Plasma-derived exosomes from neonates were significantly smaller and contained 65% less protein than those from adults. Remarkably, 131 proteins were found to be differentially expressed, 83 overexpressed and 48 underexpressed in neonatal (vs. adult) exosomes. Whereas the upregulated proteins in plasma exosomes from neonates are associated with platelet activation, coagulation and granule secretion, most of the underexpressed proteins are immunoglobulins. This is the first study showing that exosome size and content change with age. Our findings may contribute to elucidating the potential "developmental hemostatic mismatch risk" associated with transfusions containing plasma exosomes from adults.


Assuntos
Plaquetas/citologia , Exossomos/metabolismo , Exossomos/ultraestrutura , Sangue Fetal/citologia , Plasma/citologia , Adulto , Coagulação Sanguínea , Grânulos Citoplasmáticos/metabolismo , Humanos , Imunoglobulinas/sangue , Recém-Nascido , Microscopia Eletrônica de Transmissão/métodos , Ativação Plaquetária , Proteína S/análise , Proteína S/metabolismo , Proteoma , Proteômica/métodos , Pesquisa Qualitativa , Ultracentrifugação , Fator de von Willebrand/análise , Fator de von Willebrand/metabolismo
5.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498945

RESUMO

Thrombosis is a major cause of morbimortality in patients with chronic Philadelphia chromosome-negative myeloproliferative neoplasms (MPN). In the last decade, multiple lines of evidence support the role of leukocytes in thrombosis of MPN patients. Besides the increase in the number of cells, neutrophils and monocytes of MPN patients show a pro-coagulant activated phenotype. Once activated, neutrophils release structures composed of DNA, histones, and granular proteins, called extracellular neutrophil traps (NETs), which in addition to killing pathogens, provide an ideal matrix for platelet activation and coagulation mechanisms. Herein, we review the published literature related to the involvement of NETs in the pathogenesis of thrombosis in the setting of MPN; the effect that cytoreductive therapies and JAK inhibitors can have on markers of NETosis, and, finally, the novel therapeutic strategies targeting NETs to reduce the thrombotic complications in these patients.


Assuntos
Leucemia/complicações , Transtornos Mieloproliferativos/complicações , Neutrófilos , Trombose/etiologia , Animais , Humanos , Leucemia/imunologia , Transtornos Mieloproliferativos/imunologia , Trombose/imunologia
6.
7.
Int J Mol Sci ; 20(14)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315202

RESUMO

Platelets are anuclear cells with a short lifespan that play an essential role in many pathophysiological processes, including haemostasis, inflammation, infection, vascular integrity, and metastasis. Billions of platelets are produced daily from megakaryocytes (platelet precursors). Despite this high production, the number of circulating platelets is stable and, under resting conditions, they maintain their typical discoid shape thanks to cytoskeleton proteins. The activation of platelets is associated with dynamic and rapid changes in the cytoskeleton. Two cytoskeletal polymer systems exist in megakaryocytes and platelets: actin filaments and microtubules, based on actin, and α- and ß-tubulin heterodimers, respectively. Herein, we will focus on platelet-specific tubulins and their alterations and role of the microtubules skeleton in platelet formation (thrombopoiesis). During this process, microtubules mediate elongation of the megakaryocyte extensions (proplatelet) and granule trafficking from megakaryocytes to nascent platelets. In platelets, microtubules form a subcortical ring, the so-called marginal band, which confers the typical platelet discoid shape and is also responsible for changes in platelet morphology upon activation. Molecular alterations in the gene encoding ß1 tubulin and microtubules post-translational modifications may result in quantitative or qualitative changes in tubulin, leading to altered cytoskeleton reorganization that may induce changes in the platelet number (thrombocytopenia), morphology or function. Consequently, ß1-tubulin modifications may participate in pathological and physiological processes, such as development.


Assuntos
Plaquetas/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Variação Genética , Humanos , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...